Popis: |
The characteristics and performance of satellite clocks are important to the positioning, navigation, and timing (PNT) services of Global Navigation Satellite System (GNSS) users. Although China’s BeiDou-3 Navigation Satellite System (BDS-3) has been fully operational for more than one year, there is still a lack of comprehensive research on the onboard clocks of the entire BDS-3 constellation. In this study, the precise clock products of GeoForschungsZentrum (GFZ) from day-of-year (DOY) 1, 2021 to DOY 300, 2021 were used to analyze the characteristics and performance of BDS-3 onboard clocks from the following aspects: clock bias, frequency, drift rate, fitting residuals, periodicity, and frequency stability. Compared with BDS-2, the clock quality of BDS-3 satellites has been greatly improved, but there are still jumps in the clock offsets and frequency series of BDS-3 clocks. The drift rate of BDS-3 clocks varies within the range between −2×10−18 and 2×10−18 s/s2. The daily model fitting residuals of passive hydrogen masers (PHM) on BDS-3 medium Earth orbit (MEO), inclined geosynchronous orbit (IGSO), and geostationary (GEO) satellites are 0.15, 0.28, and 0.46 ns, respectively. The overlapping Allan deviation (OADEV) of BDS-3 MEO clocks is 4.0 × 10−14 s/s at a time interval of 1000 s. The PHMs on BDS-3 MEO satellites exhibit fewer periodic signals than those of Rb clocks. In addition, the precise clock offsets of the BDS-3 PHMs carried on the MEO, IGSO, and GEO satellites show different periodicities, which are similar to those of the corresponding types of BDS-2 satellites. |