Autor: |
Enrico Bassetti, Emanuele Panizzi |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Information, Vol 13, Iss 4, p 195 (2022) |
Druh dokumentu: |
article |
ISSN: |
2078-2489 |
DOI: |
10.3390/info13040195 |
Popis: |
State-of-the-art Earthquake Early Warning systems rely on a network of sensors connected to a fusion center in a client–server paradigm. The fusion center runs different algorithms on the whole data set to detect earthquakes. Instead, we propose moving computation to the edge, with detector nodes that probe the environment and process information from nearby probes to detect earthquakes locally. Our approach tolerates multiple node faults and partial network disruption and keeps all data locally, enhancing privacy. This paper describes our proposal’s rationale and explains its architecture. We then present an implementation that uses Raspberry, NodeMCU, and the Crowdquake machine learning model. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|