Autor: |
Patrik Abdelnour, Kevin Y. Zhao, Athanasios Babouras, Jason Philip Aaron Hiro Corban, Nicolaos Karatzas, Thomas Fevens, Paul Andre Martineau |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 12, p 3814 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24123814 |
Popis: |
Traditional motion analysis systems are impractical for widespread screening of non-contact anterior cruciate ligament (ACL) injury risk. The Kinect V2 has been identified as a portable and reliable alternative but was replaced by the Azure Kinect. We hypothesize that the Azure Kinect will assess drop vertical jump (DVJ) parameters associated with ACL injury risk with similar accuracy to its predecessor, the Kinect V2. Sixty-nine participants performed DVJs while being recorded by both the Azure Kinect and the Kinect V2 simultaneously. Our software analyzed the data to identify initial coronal, peak coronal, and peak sagittal knee angles. Agreement between the two systems was evaluated using the intraclass correlation coefficient (ICC). There was poor agreement between the Azure Kinect and the Kinect V2 for initial and peak coronal angles (ICC values ranging from 0.135 to 0.446), and moderate agreement for peak sagittal angles (ICC = 0.608, 0.655 for left and right knees, respectively). At this point in time, the Azure Kinect system is not a reliable successor to the Kinect V2 system for assessment of initial coronal, peak coronal, and peak sagittal angles during a DVJ, despite demonstrating superior tracking of continuous knee angles. Alternative motion analysis systems should be explored. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|