Autor: |
Joseph S Dolina, Sun-Sang J Sung, Tatiana I Novobrantseva, Tuyen M Nguyen, Young S Hahn |
Jazyk: |
angličtina |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Nucleic Acids, Vol 2, Iss C (2013) |
Druh dokumentu: |
article |
ISSN: |
2162-2531 |
DOI: |
10.1038/mtna.2012.63 |
Popis: |
Effective clinical application of antiviral immunotherapies necessitates enhancing the functional state of natural killer (NK) and CD8+ T cells. An important mechanism for the establishment of viral persistence in the liver is the activation of the PD-1/PD-L1 inhibitory pathway. To examine the role of hepatic myeloid PD-L1 expression during viral infection, we determined the magnitude and quality of antiviral immune responses by administering PD-L1 short-interfering RNA (siRNA) encapsulated in lipidoid nanoparticles (LNP) in mice. Our studies indicate that Kupffer cells (KC) preferentially engulfed PD-L1 LNP within a short period of time and silenced Pdl1 during adenovirus and MCMV infection leading to enhanced NK and CD8+ T cell intrahepatic accumulation, effector function (interferon (IFN)-γ and granzyme B (GrB) production), CD8+ T cell–mediated viral clearance, and memory. Our results demonstrate that PD-L1 knockdown on KCs is central in determining the outcome of liver viral infections, and they represent a new class of gene therapy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|