Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis

Autor: Tianyu Yao, Honglin Chen, Rong Wang, Rebeca Rivero, Fengyu Wang, Lilian Kessels, Stijn M. Agten, Tilman M. Hackeng, Tim G.A.M. Wolfs, Daidi Fan, Matthew B. Baker, Lorenzo Moroni
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Bioactive Materials, Vol 20, Iss , Pp 306-317 (2023)
Druh dokumentu: article
ISSN: 2452-199X
DOI: 10.1016/j.bioactmat.2022.05.029
Popis: Vascular endothelial growth factor (VEGF) plays a vital role in promoting attachment and proliferation of endothelial cells, and induces angiogenesis. In recent years, much research has been conducted on the functionalization of tissue engineering scaffolds with VEGF or a VEGF-mimetic peptide to promote angiogenesis. However, most chemical reactions are nonspecific and require organic solvents, which can compromise control over functionalization and alter peptide/protein activity. An attractive alternative is the fabrication of functionalizable electrospun fibers, which can overcome these hurdles. In this study, we used thiol-ene chemistry for the conjugation of a VEGF-mimetic peptide to the surface of poly (ε-caprolactone) (PCL) fibrous scaffolds with varying amounts of a functional PCL-diacrylate (PCL-DA) polymer. 30% PCL-DA was selected due to homogeneous fiber morphology. A VEGF-mimetic peptide was then immobilized on PCL-DA fibrous scaffolds by a light-initiated thiol-ene reaction. 7-Mercapto-4-methylcoumarin, RGD-FITC peptide and VEGF-TAMRA mimetic peptide were used to validate the thiol-ene reaction on the fibrous scaffolds. Tensile strength and elastic modulus of the 30% PCL-DA fibrous scaffolds were significantly increased after the reaction. Conjugation of the 30% PCL-DA fibrous scaffolds with the VEGF peptide increased the surface water wettability of the scaffolds. Patterned structures could be obtained after using a photomask on the fibrous film. Moreover, in vitro studies indicated that scaffolds functionalized with the VEGF-mimetic peptide were able to induce phosphorylation of the VEGF receptor and enhanced HUVECs survival, proliferation and adhesion. A chick chorioallantoic membrane (CAM) assay further indicated that the VEGF peptide functionalized scaffolds were able to promote angiogenesis in vivo. These results show that scaffold functionalization can be controlled via a simple polymer mixing approach, and that the functionalized VEGF peptide-scaffolds have potential for vascular tissue regeneration.
Databáze: Directory of Open Access Journals