Enhancing the Interlaminar Shear Strength and Void Control of 3D-Printed Continuous Carbon-Fiber-Reinforced Polymer Composites Using a Robotic Magnetic Compaction Force-Assisted Additive Manufacturing (MCFA-AM) Process and Carbon-Nanofiber Z-Threads

Autor: Mohammad Rakibul Islam, Wyatt Taylor, Ryan Warren, Kuang-Ting Hsiao
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Applied Sciences, Vol 13, Iss 10, p 5914 (2023)
Druh dokumentu: article
ISSN: 13105914
2076-3417
DOI: 10.3390/app13105914
Popis: Three-dimensional (3D) printing with continuous carbon-fiber-reinforced polymer (C-CFRP) composites is under increasing development, as it offers more versatility than traditional molding processes, such as the out-of-autoclave-vacuum bag only (OOA-VBO) process. However, due to the layer-by-layer deposition of materials, voids can form between the layers and weaken some of the parts’ properties, such as the interlaminar shear strength (ILSS). In this paper, a novel mold-less magnetic compaction force-assisted additive manufacturing (MCFA-AM) method was used to print carbon nanofiber (CNF) z-threaded CFRP (ZT-CFRP) laminates with significantly improved ILSS and reduced void content compared to traditional C-CFRP laminates, which are printed using a no-pressure 3D-printing process (similar to the fused-deposition-modeling process). The radial flow alignment (RFA) and resin-blending techniques were utilized to manufacture a printing-compatible fast-curing ZT-CFRP prepreg tape to act as the feedstock for a MCFA-AM printhead, which was mounted on a robotic arm. In terms of the ILSS, the MCFA-AM method coupled with ZT-CFRP nanomaterial technology significantly outperformed the C-CFRP made with both the traditional no-pressure 3D-printing process and the OOA-VBO molding process. Furthermore, the mold-less MCFA-AM process more than doubled the production speed of the OOA-VBO molding process. This demonstrates that through the integration of new nanomaterials and 3D-printing techniques, a paradigm shift in C-CFRP manufacturing with significantly better performance, versatility, agility, efficiency, and lower cost is achievable.
Databáze: Directory of Open Access Journals