Autor: |
Fabian G. Pierart, Pedro G. Campos, Cristian E. Basoalto, Jaime Rohten, Thomas Davey |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 20, p 5087 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17205087 |
Popis: |
Wave energy has the potential to provide a sustainable solution for global energy demands, particularly in coastal regions. This study explores the use of reinforcement learning (RL), specifically the Q-learning algorithm, to optimise the energy extraction capabilities of a wave energy converter (WEC) using a single-body point absorber with resistive control. Experimental validation demonstrated that Q-learning effectively optimises the power take-off (PTO) damping coefficient, leading to an energy output that closely aligns with theoretical predictions. The stability observed after approximately 40 episodes highlights the capability of Q-learning for real-time optimisation, even under irregular wave conditions. The results also showed an improvement in efficiency of 12% for the theoretical case and 11.3% for the experimental case from the initial to the optimised state, underscoring the effectiveness of the RL strategy. The simplicity of the resistive control strategy makes it a viable solution for practical engineering applications, reducing the complexity and cost of deployment. This study provides a significant step towards bridging the gap between the theoretical modelling and experimental implementation of RL-based WEC systems, contributing to the advancement of sustainable ocean energy technologies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|