Representation of functions on a line by a series of exponential monomials
Autor: | Krivosheev, Alexander Sergeevich, Krivosheeva, Olesya Alexandrovna |
---|---|
Jazyk: | English<br />Russian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика, Vol 22, Iss 4, Pp 416-429 (2022) |
Druh dokumentu: | article |
ISSN: | 1816-9791 2541-9005 |
DOI: | 10.18500/1816-9791-2022-22-4-416-429 |
Popis: | In this work, we consider the weight spaces of integrable functions $L_p^\omega$ ($p\geq 1$) and continuous functions $C^\omega$ on the real line. Let $\Lambda=\{\lambda_k,n_k\}$ be an unbounded increasing sequence of positive numbers $\lambda_k$ and their multiplicities $n_k$, $\mathcal{E}(\Lambda)=\{t^n e^{\lambda_k t}\}$ be a system of exponential monomials constructed from the sequence $\Lambda$. We study the subspaces $W^p (\Lambda,\omega)$ and $W^0 (\Lambda,\omega)$, which are the closures of the linear span of the system $\mathcal{E}(\Lambda)$ in the spaces $L_p^\omega$ and $C^\omega$, respectively. Under natural constraints on $\Lambda$ (the finiteness of the condensation index $S_\Lambda$ and $n_k/\lambda_k\leq c$, $k\geq 1$) and on the convex weight $\omega$, conditions are obtained under which each function of these subspaces continues to an entire function and is represented by a series in the system $\mathcal{E}(\Lambda)$ that converges absolutely and uniformly on compact sets in the plane. In contrast to the previously known results for the specified representation problem, we do not require that the sequence $\Lambda$ has a density, and we do not impose the separability condition: $\lambda_{k+1}-\lambda_k\geq h$, $k\geq 1$ (instead, the condition of equality to zero of the special condensation index is used). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |