Autor: |
Du Feng, Mao Jing, Wang Qiaoling, Xia Changyu, Zhao Yan |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 557-570 (2023) |
Druh dokumentu: |
article |
ISSN: |
2191-950X |
DOI: |
10.1515/anona-2022-0321 |
Popis: |
We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|