Estimates for eigenvalues of the Neumann and Steklov problems

Autor: Du Feng, Mao Jing, Wang Qiaoling, Xia Changyu, Zhao Yan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 557-570 (2023)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2022-0321
Popis: We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
Databáze: Directory of Open Access Journals