Autor: |
Soon-Mo Jung, Ki-Suk Lee, Michael Th. Rassias, Sung-Mo Yang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 8, p 1299 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8081299 |
Popis: |
Let X be a commutative normed algebra with a unit element e (or a normed field of characteristic different from 2), where the associated norm is sub-multiplicative. We prove the generalized Hyers-Ulam stability of a mean value-type functional equation, f(x)−g(y)=(x−y)h(sx+ty), where f,g,h:X→X are functions. The above mean value-type equation plays an important role in the mean value theorem and has an interesting property that characterizes the polynomials of degree at most one. We also prove the Hyers-Ulam stability of that functional equation under some additional conditions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|