Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II

Autor: Soon-Mo Jung, Ki-Suk Lee, Michael Th. Rassias, Sung-Mo Yang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 8, p 1299 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8081299
Popis: Let X be a commutative normed algebra with a unit element e (or a normed field of characteristic different from 2), where the associated norm is sub-multiplicative. We prove the generalized Hyers-Ulam stability of a mean value-type functional equation, f(x)−g(y)=(x−y)h(sx+ty), where f,g,h:X→X are functions. The above mean value-type equation plays an important role in the mean value theorem and has an interesting property that characterizes the polynomials of degree at most one. We also prove the Hyers-Ulam stability of that functional equation under some additional conditions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje