Forecasting individual progression trajectories in Alzheimer’s disease

Autor: Etienne Maheux, Igor Koval, Juliette Ortholand, Colin Birkenbihl, Damiano Archetti, Vincent Bouteloup, Stéphane Epelbaum, Carole Dufouil, Martin Hofmann-Apitius, Stanley Durrleman
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-35712-5
Popis: Accurate prediction of disease progression in Alzheimer’s disease (AD) is necessary for optimal recruitment of patients to clinical trials. Here, the authors present AD Course Map, a statistical model which helps to predict disease progression in participants, thus decreasing the required sample size for a hypothetical trial.
Databáze: Directory of Open Access Journals