Autor: |
Wahyu Nugraha, Raja Sabaruddin |
Jazyk: |
indonéština |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Techno.Com, Vol 20, Iss 3, Pp 352-361 (2021) |
Druh dokumentu: |
article |
ISSN: |
2356-2579 |
DOI: |
10.33633/tc.v20i3.4762 |
Popis: |
Penderita diabetes di seluruh dunia terus mengalami peningkatan dengan angka kematian sebesar 4,6 juta pada tahun 2011 dan diperkirakan akan terus meningkat secara global menjadi 552 juta pada tahun 2030. Pencegahan Penyakit diabetes mungkin dapat dilakukan secara efektif dengan cara mendeteksinya sejak dini. Data mining dan machine learning terus dikembangkan agar menjadi alat yang handal dalam membangun model komputasi untuk mengidentifikasi penyakit diabetes pada tahap awal. Namun, masalah yang sering dihadapi dalam menganalisis penyakit diabetes ialah masalah ketidakseimbangan class. Kelas yang tidak seimbang membuat model pembelajaran akan sulit melakukan prediksi karena model pembelajaran didominasi oleh instance kelas mayoritas sehingga mengabaikan prediksi kelas minoritas. Pada penelitian ini kami mencoba menganalisa dan mencoba mengatasi masalah ketidakseimbangan kelas dengan menggunakan pendekatan level data yaitu teknik resampling data. Eksperimen ini menggunakan R language dengan library ROSE (version 0.0-4). Dataset Pima Indians dipilih pada penelitian ini karena merupakan salah satu dataset yang mengalami ketidakseimbangan kelas. Model pengklasifikasian pada penelitian ini menggunakan algoritma decision tree C4.5, RF (Random Forest), dan SVM (Support Vector Machines). Dari hasil eksperimen yang dilakukan model klasifikasi SVM dengan teknik resampling yang menggabungkan over dan under-sampling menjadi model yang memiliki performa terbaik dengan nilai AUC (Area Under Curve) sebesar 0.80 |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|