Autor: |
Xu Yang, Yunlin Lei, Mengxing Wang, Jian Cai, Miao Wang, Ziyi Huan, Xialv Lin |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Brain Sciences, Vol 12, Iss 2, p 139 (2022) |
Druh dokumentu: |
article |
ISSN: |
2076-3425 |
DOI: |
10.3390/brainsci12020139 |
Popis: |
Small sample learning ability is one of the most significant characteristics of the human brain. However, its mechanism is yet to be fully unveiled. In recent years, brain-inspired artificial intelligence has become a very hot research domain. Researchers explored brain-inspired technologies or architectures to construct neural networks that could achieve human-alike intelligence. In this work, we presented our effort at evaluation of the effect of dynamic behavior and topology co-learning of neurons and synapses on the small sample learning ability of spiking neural network. Results show that the dynamic behavior and topology co-learning mechanism of neurons and synapses presented in our work could significantly reduce the number of required samples, while maintaining a reasonable performance on the MNIST data-set, resulting in a very lightweight neural network structure. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|