Autor: |
A. Koehler, R. Pausch, M. Bussmann, J. P. Couperus Cabadağ, A. Debus, J. M. Krämer, S. Schöbel, O. Zarini, U. Schramm, A. Irman |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Physical Review Accelerators and Beams, Vol 24, Iss 9, p 091302 (2021) |
Druh dokumentu: |
article |
ISSN: |
2469-9888 |
DOI: |
10.1103/PhysRevAccelBeams.24.091302 |
Popis: |
Matched beam loading in laser wakefield acceleration, characterizing the state of flattening the accelerating electric field along the bunch, leads to the minimization of energy spread at high-bunch charges. Here, we experimentally demonstrate by independently controlling injected charge and accelerating gradients, using the self-truncated ionization injection scheme, that minimal energy spread coincides with a reduction of the normalized beam divergence. With the simultaneous confirmation of the micrometer-small beam radius at the plasma exit, deduced from betatron radiation spectroscopy, we attribute this effect to the minimization of chromatic betatron decoherence. These findings are supported by rigorous three-dimensional particle-in-cell simulations tracking self-consistently particle trajectories from injection, acceleration until beam extraction to vacuum. We conclude that beam-loaded laser wakefield acceleration enables highest longitudinal and transverse phase space densities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|