Machine learning for predicting successful extubation in patients receiving mechanical ventilation

Autor: Yutaka Igarashi, Kei Ogawa, Kan Nishimura, Shuichiro Osawa, Hayato Ohwada, Shoji Yokobori
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Medicine, Vol 9 (2022)
Druh dokumentu: article
ISSN: 2296-858X
DOI: 10.3389/fmed.2022.961252
Popis: Ventilator liberation is one of the most critical decisions in the intensive care unit; however, prediction of extubation failure is difficult, and the proportion thereof remains high. Machine learning can potentially provide a breakthrough in the prediction of extubation success. A total of seven studies on the prediction of extubation success using machine learning have been published. These machine learning models were developed using data from electronic health records, 8–78 features, and algorithms such as artificial neural network, LightGBM, and XGBoost. Sensitivity ranged from 0.64 to 0.96, specificity ranged from 0.73 to 0.85, and area under the receiver operating characteristic curve ranged from 0.70 to 0.98. The features deemed most important included duration of mechanical ventilation, PaO2, blood urea nitrogen, heart rate, and Glasgow Coma Scale score. Although the studies had limitations, prediction of extubation success by machine learning has the potential to be a powerful tool. Further studies are needed to assess whether machine learning prediction reduces the incidence of extubation failure or prolongs the duration of ventilator use, thereby increasing tracheostomy and ventilator-related complications and mortality.
Databáze: Directory of Open Access Journals