On the offensive alliance number for the zero divisor graph of $ \mathbb{Z}_n $

Autor: José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematical Biosciences and Engineering, Vol 20, Iss 7, Pp 12118-12129 (2023)
Druh dokumentu: article
ISSN: 1551-0018
DOI: 10.3934/mbe.2023539?viewType=HTML
Popis: A nonempty subset $ D $ of vertices in a graph $ \Gamma = (V, E) $ is said is an offensive alliance, if every vertex $ v \in \partial(D) $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum offensive alliance of $ \Gamma $ is called the offensive alliance number $ \alpha ^o(\Gamma) $ of $ \Gamma $. An offensive alliance $ D $ is called global, if every $ v \in V - D $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum global offensive alliance of $ \Gamma $ is called the global offensive alliance number $ \gamma^o(\Gamma) $ of $ \Gamma $. For a finite commutative ring with identity $ R $, $ \Gamma(R) $ denotes the zero divisor graph of $ R $. In this paper, we compute the offensive alliance (global, independent, and independent global) numbers of $ \Gamma(\mathbb{Z}_n) $, for some cases of $ n $.
Databáze: Directory of Open Access Journals