Autor: |
José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Mathematical Biosciences and Engineering, Vol 20, Iss 7, Pp 12118-12129 (2023) |
Druh dokumentu: |
article |
ISSN: |
1551-0018 |
DOI: |
10.3934/mbe.2023539?viewType=HTML |
Popis: |
A nonempty subset $ D $ of vertices in a graph $ \Gamma = (V, E) $ is said is an offensive alliance, if every vertex $ v \in \partial(D) $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum offensive alliance of $ \Gamma $ is called the offensive alliance number $ \alpha ^o(\Gamma) $ of $ \Gamma $. An offensive alliance $ D $ is called global, if every $ v \in V - D $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum global offensive alliance of $ \Gamma $ is called the global offensive alliance number $ \gamma^o(\Gamma) $ of $ \Gamma $. For a finite commutative ring with identity $ R $, $ \Gamma(R) $ denotes the zero divisor graph of $ R $. In this paper, we compute the offensive alliance (global, independent, and independent global) numbers of $ \Gamma(\mathbb{Z}_n) $, for some cases of $ n $. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|