Personalized Federated Learning with Adaptive Feature Extraction and Category Prediction in Non-IID Datasets
Autor: | Ying-Hsun Lai, Shin-Yeh Chen, Wen-Chi Chou, Hua-Yang Hsu, Han-Chieh Chao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Future Internet, Vol 16, Iss 3, p 95 (2024) |
Druh dokumentu: | article |
ISSN: | 16030095 1999-5903 |
DOI: | 10.3390/fi16030095 |
Popis: | Federated learning trains a neural network model using the client’s data to maintain the benefits of centralized model training while maintaining their privacy. However, if the client data are not independently and identically distributed (non-IID) because of different environments, the accuracy of the model may suffer from client drift during training owing to discrepancies in each client’s data. This study proposes a personalized federated learning algorithm based on the concept of multitask learning to divide each client model into two layers: a feature extraction layer and a category prediction layer. The feature extraction layer maps the input data to a low-dimensional feature vector space. Furthermore, the parameters of the neural network are aggregated with those of other clients using an adaptive method. The category prediction layer maps low-dimensional feature vectors to the label sample space, with its parameters remaining unaffected by other clients to maintain client uniqueness. The proposed personalized federated learning method produces faster learning model convergence rates and higher accuracy rates for the non-IID datasets in our experiments. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |