Autor: |
Floyd L. Williams |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Communications in Analysis and Mechanics, Vol 15, Iss 3, Pp 342-361 (2023) |
Druh dokumentu: |
article |
ISSN: |
2836-3310 |
DOI: |
10.3934/cam.2023017?viewType=HTML |
Popis: |
We assign a Riemannian metric to a system of nonlinear equations that describe the one-dimensional propagation of long magnetoacoustic waves (also called magnetosonic waves) in a cold plasma under the inference of a transverse magnetic field. The metric, which in general is expressed in terms of the density of the plasma and its speed across the magnetic field, when specialized to a particular solution of the nonlinear system (the Gurevich-Krylov (G-K) solution) is mapped explicitly to a Jackiw-Teitelboim (J-T) black hole metric, which is the main result. Dilaton fields, constructed from data involved in the G-K solution, are presented - which with the plasma metric provide for elliptic function solutions of the J-T equations of motion in 2d dilaton gravity. A correspondence between solutions of the nonlinear plasma system (whose Galilean invariance is also established) and certain solutions of a resonant nonlinear Schrödinger equation is set up, along with some other general background material to render an expository tone in the presentation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|