Monogenic functions and harmonic vectors
Autor: | Sergiy Plaksa |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Pracì Mìžnarodnogo Geometričnogo Centru, Vol 16, Iss 1, Pp 59-77 (2023) |
Druh dokumentu: | article |
ISSN: | 2072-9812 2409-8906 |
DOI: | 10.15673/tmgc.v16i1.2385 |
Popis: | We consider special topological vector spaces with a commutative multiplication for some of elements of the spaces and monogenic functions taking values in these spaces. Monogenic functions are understood as continuous and differentiable in the sense of G\^ateaux functions. We describe relations between the mentioned monogenic functions and harmonic vectors in the three-dimensional real space and establish sufficient conditions for infinite monogeneity of functions. Unlike the classical complex analysis, it is done in the case where the validity of the Cauchy integral formula for monogenic functions remains an open problem. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |