Autor: |
Ashok Shanmugam, Kavitha KVN, Prianka Ramachandran Radhabai, Senthilnathan Natarajan, Agbotiname Lucky Imoize, Stephen Ojo, Thomas I. Nathaniel |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Oncology, Vol 14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2234-943X |
DOI: |
10.3389/fonc.2024.1264611 |
Popis: |
Cervical cancer is a significant concern for women, necessitating early detection and precise treatment. Conventional cytological methods often fall short in early diagnosis. The proposed innovative Heap Optimizer-based Self-Systematized Neural Fuzzy (HO-SsNF) method offers a viable solution. It utilizes HO-based segmentation, extracting features via Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP). The proposed SsNF-based classifier achieves an impressive 99.6% accuracy in classifying cervical cancer cells, using the Herlev Pap Smear database. Comparative analyses underscore its superiority, establishing it as a valuable tool for precise cervical cancer detection. This algorithm has been seamlessly integrated into cervical cancer diagnosis centers, accessible through smartphone applications, with minimal resource demands. The resulting insights provide a foundation for advancing cancer prevention methods. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|