Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation

Autor: Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: AIMS Mathematics, Vol 6, Iss 7, Pp 7555-7584 (2021)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2021441?viewType=HTML
Popis: The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, cosh hyperbolic, and cos periodic), cross-kink containing (exponential, sinh hyperbolic, and sin periodic), and solitary containing (exponential, tanh hyperbolic, and tan periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.
Databáze: Directory of Open Access Journals