Autor: |
Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, Patrick J. Coles |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-022-32550-3 |
Popis: |
The power of quantum machine learning algorithms based on parametrised quantum circuits are still not fully understood. Here, the authors report rigorous bounds on the generalisation error in variational QML, confirming how known implementable models generalize well from an efficient amount of training data. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|