Generalization in quantum machine learning from few training data

Autor: Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, Patrick J. Coles
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-32550-3
Popis: The power of quantum machine learning algorithms based on parametrised quantum circuits are still not fully understood. Here, the authors report rigorous bounds on the generalisation error in variational QML, confirming how known implementable models generalize well from an efficient amount of training data.
Databáze: Directory of Open Access Journals