Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions

Autor: Shahid Khan, Şahsene Altınkaya, Qin Xin, Fairouz Tchier, Sarfraz Nawaz Malik, Nazar Khan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Symmetry, Vol 15, Iss 3, p 604 (2023)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym15030604
Popis: Motivated by the recent work on symmetric analytic functions by using the concept of Faber polynomials, this article introduces and studies two new subclasses of bi-close-to-convex and quasi-close-to-convex functions associated with Janowski functions. By using the Faber polynomial expansion method, it determines the general coefficient bounds for the functions belonging to these classes. It also finds initial coefficients of bi-close-to-convex and bi-quasi-convex functions by using Janowski functions. Some known consequences of the main results are also highlighted.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje