Autor: |
Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 3, Pp 6709-6733 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024327?viewType=HTML |
Popis: |
The notion of a transposed Poisson $ n $-Lie algebra has been developed as a natural generalization of a transposed Poisson algebra. It was conjectured that a transposed Poisson $ n $-Lie algebra with a derivation gives rise to a transposed Poisson $ (n+1) $-Lie algebra. In this paper, we focus on transposed Poisson $ n $-Lie algebras. We have obtained a rich family of identities for these algebras. As an application of these formulas, we provide a construction of $ (n+1) $-Lie algebras from transposed Poisson $ n $-Lie algebras with derivations under a certain strong condition, and we prove the conjecture in these cases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|