Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network.

Autor: Bánk G Fenyves, Gábor S Szilágyi, Zsolt Vassy, Csaba Sőti, Peter Csermely
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: PLoS Computational Biology, Vol 16, Iss 12, p e1007974 (2020)
Druh dokumentu: article
ISSN: 1553-734X
1553-7358
DOI: 10.1371/journal.pcbi.1007974
Popis: Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje