Intellectual stock regulator of gas-dynamic stability of the aviation GTE compressor
Autor: | Сергій Васильович Єнчев, Сергій Олегович Таку |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Авіаційно-космічна техніка та технологія, Vol 0, Iss 4, Pp 48-52 (2021) |
Druh dokumentu: | article |
ISSN: | 1727-7337 2663-2217 |
DOI: | 10.32620/aktt.2021.4.07 |
Popis: | The gas-dynamic stability of compressors of aircraft gas turbine engines is one of the most important conditions that determine their reliability and level of flight safety. Unstable operation of the compressor in the engine system (surge) leads to loss of thrust accompanied by an increase in gas temperature in front of the turbine and increased vibration because of large amplitudes of pressure pulsations and mass flow through the engine path. To improve the parameters of ACS aviation gas turbine engines are increasingly using regulators built using fuzzy logic algorithms. The implementation of fuzzy control algorithms differs from classical algorithms, which are based on the concept of feedback and reproduce a given functional dependence or differential equation. These functions are related to the qualitative assessment of system behavior, analysis of the current changing situation, and the selection of the most appropriate for the situation supervision of the gas turbine engine. This concept is called advanced management. ACS gas turbine engines with fuzzy regulators are nonlinear systems in which stable self-oscillations are possible. Approximate methods are used to solve the problems of analysis of periodic oscillations in nonlinear systems. Among them, the most developed in theoretical and methodological aspects is the method of harmonic linearization. The scientific problem is solved in the work – methods of synthesis of intelligent control system with the fuzzy regulator as a separate subsystem based on the method of harmonic linearization and design on its basis of fuzzy ACS reserve of gas-dynamic stability of aviation gas turbine engine. Based on the analysis of the principles of construction of fuzzy control systems, it is shown that the use of fuzzy logic provides a new approach to the design of control systems for aviation gas turbine engines in contrast to traditional control methods. It is shown that the fuzzy controller, as the only essentially nonlinear element when using numerical integration methods, can be harmonically linearized. Harmonic linearization allows using the oscillation index to assess the quality in the separate channels of fuzzy ACS aviation gas turbine engines. A fuzzy expert system has been developed for optimal adjustment of the functions of belonging of typical fuzzy regulators according to quality criteria to transients. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |