Autor: |
Pieter Bastiaan Ober, Jiri Doubek, Tamás Prajczer, János Nemes, Csongor Fekete, Mickael Dall’Orso, Guillaume Buscarlet |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Engineering Proceedings, Vol 54, Iss 1, p 48 (2023) |
Druh dokumentu: |
article |
ISSN: |
2673-4591 |
DOI: |
10.3390/ENC2023-15456 |
Popis: |
The paper describes the development of a machine learning-based system to predict the performance of EGNOS. The system is shown to perform considerably better than existing simple geometry-based ‘macro’ models developed for the same purpose in the past. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|