Schur's exponent conjecture - counterexamples of exponent $5$ and exponent $9$

Autor: Michael Vaughan-Lee
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Group Theory, Vol 10, Iss 4, Pp 167-173 (2021)
Druh dokumentu: article
ISSN: 2251-7650
2251-7669
DOI: 10.22108/ijgt.2020.123980.1638
Popis: There is a long-standing conjecture attributed to I. Schur that if $G$ is a finite group with Schur multiplier $M(G)$ then the exponent of $M(G)$ divides the exponent of $G$. In this note I give an example of a four generator group $G$ of order $5^{4122}$ with exponent $5$, where the Schur multiplier $M(G)$ has exponent $25$.
Databáze: Directory of Open Access Journals