Schur's exponent conjecture - counterexamples of exponent $5$ and exponent $9$
Autor: | Michael Vaughan-Lee |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | International Journal of Group Theory, Vol 10, Iss 4, Pp 167-173 (2021) |
Druh dokumentu: | article |
ISSN: | 2251-7650 2251-7669 |
DOI: | 10.22108/ijgt.2020.123980.1638 |
Popis: | There is a long-standing conjecture attributed to I. Schur that if $G$ is a finite group with Schur multiplier $M(G)$ then the exponent of $M(G)$ divides the exponent of $G$. In this note I give an example of a four generator group $G$ of order $5^{4122}$ with exponent $5$, where the Schur multiplier $M(G)$ has exponent $25$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |