Autor: |
Nishad Sultana, S. N. Nagesha, C. N. Lakshminarayana Reddy, B. N. Ramesh, S. Shyamalamma, K. S. Shashidhara, K. M. Satish, C. Pradeep, G. D Vidyadhar |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Virology Journal, Vol 21, Iss 1, Pp 1-15 (2024) |
Druh dokumentu: |
article |
ISSN: |
1743-422X |
DOI: |
10.1186/s12985-024-02365-3 |
Popis: |
Abstract The novel coronavirus SARS-CoV-2 resulted in a significant worldwide health emergency known as the COVID-19 pandemic. This crisis has been marked by the widespread of various variants, with certain ones causing notable apprehension. In this study, we harnessed computational techniques to scrutinize these Variants of Concern (VOCs), including various Omicron subvariants. Our approach involved the use of protein structure prediction algorithms and molecular docking techniques, we have investigated the effects of mutations within the Receptor Binding Domain (RBD) of SARS-CoV-2 and how these mutations influence its interactions with the human angiotensin-converting enzyme 2 (hACE-2) receptor. Further we have predicted the structural alterations in the RBD of naturally occurring SARS-CoV-2 variants using the tr-Rosetta algorithm. Subsequent docking and binding analysis employing HADDOCK and PRODIGY illuminated crucial interactions occurring at the Receptor-Binding Motif (RBM). Our findings revealed a hierarchy of increased binding affinity between the human ACE2 receptor and the various RBDs, in the order of wild type (Wuhan-strain) |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|