Global Polynomial Kernel Hazard Estimation

Autor: MUNIR HIABU, MARÍA DOLORES MARTÍNEZ-MIRANDA, JENS PERCH NIELSEN, JAAP SPREEUW, CARSTEN TANGGAARD, ANDRÉS M. VILLEGAS
Jazyk: angličtina
Předmět:
Zdroj: Revista Colombiana de Estadística, Vol 38, Iss 2, Pp 399-411
Druh dokumentu: article
ISSN: 0120-1751
DOI: 10.15446/rce.v38n2.51668
Popis: This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically reduces bias with unchanged variance. A simulation study investigates the finite-sample properties of GPA. The method is tested on local constant and local linear estimators. From the simulation experiment we conclude that the global estimator improves the goodness-of-fit. An especially encouraging result is that the bias-correction works well for small samples, where traditional bias reduction methods have a tendency to fail.
Databáze: Directory of Open Access Journals