Smoothness of solutions of a convolution equation of restricted type on the sphere

Autor: Diogo Oliveira e Silva, René Quilodrán
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 9 (2021)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2021.7
Popis: Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\cdot(f\sigma_{d-1})^{\ast {(q-1)}}\big\vert_{\mathbb{S}^{d-1}}=f,\text{ a.e. on }\mathbb{S}^{d-1}, \end{align*}$$where $a\in C^\infty (\mathbb {S}^{d-1})$, $q\geq 2(d+1)/(d-1)$ is an integer, and the only a priori assumption is $f\in L^2(\mathbb {S}^{d-1})$. We prove that any such solution belongs to the class $C^\infty (\mathbb {S}^{d-1})$. In particular, we show that all critical points associated with the sharp form of the corresponding adjoint Fourier restriction inequality on $\mathbb {S}^{d-1}$ are $C^\infty $-smooth. This extends previous work of Christ and Shao [4] to arbitrary dimensions and general even exponents and plays a key role in the companion paper [24].
Databáze: Directory of Open Access Journals