Autor: |
Diogo Oliveira e Silva, René Quilodrán |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Forum of Mathematics, Sigma, Vol 9 (2021) |
Druh dokumentu: |
article |
ISSN: |
2050-5094 |
DOI: |
10.1017/fms.2021.7 |
Popis: |
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\cdot(f\sigma_{d-1})^{\ast {(q-1)}}\big\vert_{\mathbb{S}^{d-1}}=f,\text{ a.e. on }\mathbb{S}^{d-1}, \end{align*}$$where $a\in C^\infty (\mathbb {S}^{d-1})$, $q\geq 2(d+1)/(d-1)$ is an integer, and the only a priori assumption is $f\in L^2(\mathbb {S}^{d-1})$. We prove that any such solution belongs to the class $C^\infty (\mathbb {S}^{d-1})$. In particular, we show that all critical points associated with the sharp form of the corresponding adjoint Fourier restriction inequality on $\mathbb {S}^{d-1}$ are $C^\infty $-smooth. This extends previous work of Christ and Shao [4] to arbitrary dimensions and general even exponents and plays a key role in the companion paper [24]. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|