Autor: |
Gai Ran, Xiao Chen, Yilin Xie, Qingyun Zheng, Jinyan Xie, Chenghui Yu, Nikea Pittman, Sixian Qi, Fa-Xing Yu, Mavis Agbandje-McKenna, Arun Srivastava, Chen Ling |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Methods & Clinical Development, Vol 17, Iss , Pp 545-555 (2020) |
Druh dokumentu: |
article |
ISSN: |
2329-0501 |
DOI: |
10.1016/j.omtm.2020.03.007 |
Popis: |
Recombinant adeno-associated virus (rAAV) vectors selected from capsid libraries present enormous advantages in high selectivity of tissue tropism and their potential use in human gene therapy applications. For example, rAAV-LK03, was used in a gene therapy trial for hemophilia A (ClinicalTrials.gov: NCT03003533). However, high doses in patients resulted in severe adverse events and subsequent loss of factor VIII (FVIII) expression. Thus, additional strategies are needed to enhance the transduction efficiency of capsid library-derived rAAV vectors such that improved clinical efficacy can be achieved at low vector doses. In this study, we characterized two commonly used library-derived rAAV vectors, rAAV-DJ and rAAV-LK03. It was concluded that rAAV-DJ shared similar transport pathways (e.g., cell surface binding, endocytosis-dependent internalization, and cytoplasmic trafficking) with rAAV serotype 2, while rAAV-LK03 and rAAV serotype 3 shared similar transport pathways. We then performed site-directed mutagenesis of surface-exposed tyrosine (Y), serine (S), aspartic acid (D), and tryptophan (W) residues on rAAV-DJ and rAAV-LK03 capsids. Our results demonstrated that rAAV-DJ-S269T and rAAV-LK03-Y705+731F variants had significantly enhanced transduction efficiency compared to wild-type counterparts. Our studies suggest that the strategy of site-directed mutagenesis should be applicable to other non-natural AAV variants for their optimal use in human gene therapy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|