A Model-Based Prognostic Framework for Electromechanical Actuators Based on Metaheuristic Algorithms

Autor: Leonardo Baldo, Ivana Querques, Matteo Davide Lorenzo Dalla Vedova, Paolo Maggiore
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Aerospace, Vol 10, Iss 3, p 293 (2023)
Druh dokumentu: article
ISSN: 2226-4310
DOI: 10.3390/aerospace10030293
Popis: The deployment of electro-mechanical actuators plays an important role towards the adoption of the more electric aircraft (MEA) philosophy. On the other hand, a seamless substitution of EMAs, in place of more traditional hydraulic solutions, is still set back, due to the shortage of real-life and reliability data regarding their failure modes. One way to work around this problem is providing a capillary EMA prognostics and health management (PHM) system capable of recognizing failures before they actually undermine the ability of the safety-critical system to perform its functions. The aim of this work is the development of a model-based prognostic framework for PMSM-based EMAs leveraging a metaheuristic algorithm: the evolutionary (differential evolution (DE)) and swarm intelligence (particle swarm (PSO), grey wolf (GWO)) methods are considered. Several failures (dry friction, backlash, short circuit, eccentricity, and proportional gain) are simulated by a reference model, and then detected and identified by the envisioned prognostic method, which employs a low fidelity monitoring model. The paper findings are analysed, showing good results and proving that this strategy could be executed and integrated in more complex routines, supporting EMAs adoption, with positive impacts on system safety and reliability in the aerospace and industrial field.
Databáze: Directory of Open Access Journals