Wind Speed Prediction Based on Error Compensation

Autor: Xuguo Jiao, Daoyuan Zhang, Xin Wang, Yanbing Tian, Wenfeng Liu, Liping Xin
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 10, p 4905 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23104905
Popis: Wind speed prediction is very important in the field of wind power generation technology. It is helpful for increasing the quantity and quality of generated wind power from wind farms. By using univariate wind speed time series, this paper proposes a hybrid wind speed prediction model based on Autoregressive Moving Average-Support Vector Regression (ARMA-SVR) and error compensation. First, to explore the balance between the computation cost and the sufficiency of the input features, the characteristics of ARMA are employed to determine the number of historical wind speeds for the prediction model. According to the selected number of input features, the original data are divided into multiple groups that can be used to train the SVR-based wind speed prediction model. Furthermore, in order to compensate for the time lag introduced by the frequent and sharp fluctuations in natural wind speed, a novel Extreme Learning Machine (ELM)-based error correction technique is developed to decrease the deviations between the predicted wind speed and its real values. By this means, more accurate wind speed prediction results can be obtained. Finally, verification studies are conducted by using real data collected from actual wind farms. Comparison results demonstrate that the proposed method can achieve better prediction results than traditional approaches.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje