Popis: |
This study experimentally investigates the Kalsilite-Nepheline-Diopside-Silica system at high pressure and temperature, with emphasis on silica-undersaturated volume (leucite-nepheline-diopside — Lct-Nph-Di; and kalsilite-nepheline-diopside — Kls + Nph + Di — planes), at 4.0 GPa (~120 km deep), temperatures up to 1,400ºC and dry conditions, to better understand the influence of K2O, Na2O, and CaO in alkali-rich silica-undersaturated magma genesis. In the Lct-Nph-Di plane, we determined the stability fields for kalsilite (Klsss), nepheline (Nphss) and clinopyroxene (Cpxss) solid solutions, wollastonite (Wo) and sanidine (Sa); and three piercing points: (i) pseudo-eutectic Kls + Nph + Di + liquid (Lct62Nph29Di9) at 1,000ºC; (ii) Kls + Sa + (Di + Wo) + liquid (Lct75Nph22Di2) at 1,200ºC; and (iii) pseudo-eutectic Kls + Di + Wo + liquid (Lct74Nph17Di9) at 1,000ºC. Kalsilite stability field represents a thermal barrier between ultrapotassic/potassic vs. sodic compositions. In the plane Kls-Nph-Di, we determined the stability fields for Klsss, Nphss and Cpxss and two aluminous phases in smaller proportions: spinel (Spl) and corundum (Crn). This plane has a piercing point in Kls + Nph + Di(± Spl) + liquid (Kls47Nph43Di10) at 1,100ºC. Our data showed that pressure extends K dissolution in Nph (up to 39 mol%) and Na in Kls (up to 27 mol%), and that these solid solutions, if present, determinate how much enriched in K and Na an alkaline magma will be in an alkaline-enriched metasomatic mantle. Additionally, we noted positive correlation between K2O and SiO2 concentration in experimental melts, negative correlation between CaO and SiO2, and no evident correlation between Na2O and SiO2. |