KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification

Autor: Daniel Guillermo García-Murillo, Andrés Marino Álvarez-Meza, Cesar German Castellanos-Dominguez
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Diagnostics, Vol 13, Iss 6, p 1122 (2023)
Druh dokumentu: article
ISSN: 2075-4418
DOI: 10.3390/diagnostics13061122
Popis: This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje