Lutein-Fortified Plant-Based Egg Analogs Designed to Improve Eye Health: Formation, Characterization, In Vitro Digestion, and Bioaccessibility

Autor: Giang Vu, Xiaoke Xiang, Hualu Zhou, David Julian McClements
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Foods, Vol 12, Iss 1, p 2 (2022)
Druh dokumentu: article
ISSN: 2304-8158
DOI: 10.3390/foods12010002
Popis: Lutein is a carotenoid found in real eggs that has been reported to have beneficial effects on eye health by reducing the risk of age-related macular degeneration. However, lutein is not often included in plant based (PB) egg analogs. It would, therefore, be advantageous to fortify PB eggs with this health-promoting carotenoid. Moreover, lutein is a natural pigment with a bright red to yellowish color depending on its concentration and environment. It can, therefore, also be used as a plant-based pigment to mimic the desirable appearance of egg yolk. Some of the main challenges to using lutein as a nutraceutical and pigment in PB foods are its poor water-solubility, chemical stability, and bioavailability. In this study, we encapsulated lutein in oil-in-water emulsions, which were then utilized to formulate whole egg analogs. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein isolated from a sustainable plant-based source (duckweed) was used to mimic the thermally irreversible heat-set gelling properties of globular egg proteins, with the aim of obtaining a similar cookability and texture as real eggs. The lutein content (80 mg/100 g) of the egg analogs was designed to be at a level where there should be health benefits. The protein (12.5 wt.%) and oil (10 wt.%) contents of the egg analogs were selected to match those of real egg. The effects of oil droplet size and oil type on the bioaccessibility of the encapsulated lutein were examined using the INFOGEST in vitro digestion model. For the emulsions formulated with long chain triglycerides (LCTs, corn oil), lutein bioaccessibility significantly increased when the initial droplet diameter decreased from around 10 to 0.3 μm, which was attributed to more rapid and complete digestion of the lipid phase for smaller droplets. For medium chain triglycerides (MCTs), however, no impact of droplet size on lutein bioaccessibility was observed. A high lutein bioaccessibility (around 80%) could be obtained for both LCTs and MCTs emulsions containing small oil droplets. Thus, both types of oil can be good carriers for lutein. In summary, we have shown that lutein-fortified PB eggs with good digestibility and bioaccessibility can be created, which may play an important role in ensuring the health of those adopting a more plant-based diet.
Databáze: Directory of Open Access Journals