Unsupervised Hyperspectral Band Selection using Clustering and Single-Layer Neural Network

Autor: Mateus Habermann, Vincent Frémont, Elcio Hideiti Shiguemori
Jazyk: English<br />French
Rok vydání: 2018
Předmět:
Zdroj: Revue Française de Photogrammétrie et de Télédétection, Iss 217-218 (2018)
Druh dokumentu: article
ISSN: 1768-9791
2426-3974
DOI: 10.52638/rfpt.2018.419
Popis: Hyperspectral images provide rich spectral details of the observed scene by exploiting contiguous bands. But, the processing of such images becomes heavy, due to the high dimensionality. Thus, band selection is a practice that has been adopted before any further processing takes place. Therefore, in this paper, a new unsupervised method for band selection based on clustering and neural network is proposed. A comparison with six other band selection frameworks shows the strength of the proposed method.
Databáze: Directory of Open Access Journals