Popis: |
The geodynamic mechanisms that controlled magmatic activity in South China during the late Mesozoic have been a cutting-edge focus of recent research. Southeastern Guangxi, which is located at the juncture between the Pacific and Neo-Tethyan tectonic domains, is a transitional zone characterized by the occurrence of widespread Jurassic–Cretaceous magmatic rocks. Investigation of this region can shed light on the late Mesozoic tectonic setting of South China. We conducted U–Pb geochronological and geochemical analyses of the Liuwang granodiorite and quartz porphyry, which are exposed in southeastern Guangxi. Zircon U–Pb dating yielded an age of 161.8 ± 1.2 Ma for the granodiorite and 97.89 ± 0.68 Ma for the quartz porphyry, indicating that they formed during the Late Jurassic and Late Cretaceous, respectively. The Liuwang granodiorites are weakly peraluminous high-K calc-alkaline rocks characterized by enrichment in large ion lithophile elements (including Rb) and high field strength elements (including Th, U, Pb, and Ta) and depletion in Ba, Nb, and Sr. The granodiorites also exhibit weak rare earth element (REE) fractionation and slightly negative Eu anomalies. Conversely, the Liuwang quartz porphyry is weakly peraluminous and belongs to the potassic syenite series, transitioning into the high-K calc-alkaline series. It is characterized by enrichment in Rb and high field strength elements (including Th, U, Pb, and Ta), with depletion in Ba, Nb, Sr, and Zr. It does not exhibit REE fractionation but does yield prominent negative Eu anomalies. The granodiorite and quartz porphyry yield εHf(t) values of −23.26 to −2.48 and −4.4 to +0.8, respectively, with tDM2 ages of 2642–1270 and 1411–1081 Ma, respectively. These data suggest that the Liuwang granodiorite formed under a background of Late Jurassic lithospheric extension–thinning and was derived from partial melting of Palaeoproterozoic–Mesoproterozoic metasedimentary sandstones with a minor contribution from mantle-derived melts. In contrast, the Liuwang quartz porphyry was derived from partial melting of Mesoproterozoic pelitic rocks and formed in a Late Cretaceous tectonic setting linked to the northward subduction of the Neo-Tethys Ocean beneath South China. |