Phase space structure and fractal trajectories in 1½ degree of freedom Hamiltonian systems whose time dependence is quasiperiodic
Autor: | M. G. Brown |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1998 |
Předmět: | |
Zdroj: | Nonlinear Processes in Geophysics, Vol 5, Iss 2, Pp 69-74 (1998) |
Druh dokumentu: | article |
ISSN: | 1023-5809 1607-7946 |
Popis: | We consider particle motion in nonautonomous 1 degree of freedom Hamiltonian systems for which H(p,q,t) depends on N periodic functions of t with incommensurable frequencies. It is shown that in near-integrable systems of this type, phase space is partitioned into nonintersecting regular and chaotic regions. In this respect there is no different between the N = 1 (periodic time dependence) and the N = 2, 3, ... (quasi-periodic time dependence) problems. An important consequence of this phase space structure is that the mechanism that leads to fractal properties of chaotic trajectories in systems with N = 1 also applies to the larger class of problems treated here. Implications of the results presented to studies of ray dynamics in two-dimensional incompressible fluid flows are discussed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |