Autor: |
Surendra K. Dhaka, Chetna, Vinay Kumar, Vivek Panwar, A. P. Dimri, Narendra Singh, Prabir K. Patra, Yutaka Matsumi, Masayuki Takigawa, Tomoki Nakayama, Kazuyo Yamaji, Mizuo Kajino, Prakhar Misra, Sachiko Hayashida |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 10, Iss 1, Pp 1-8 (2020) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-020-70179-8 |
Popis: |
Abstract Delhi, a tropical Indian megacity, experiences one of the most severe air pollution in the world, linked with diverse anthropogenic and biomass burning emissions. First phase of COVID-19 lockdown in India, implemented during 25 March to 14 April 2020 resulted in a dramatic near-zeroing of various activities (e.g. traffic, industries, constructions), except the “essential services”. Here, we analysed variations in the fine particulate matter (PM2.5) over the Delhi-National Capital Region. Measurements revealed large reductions (by 40–70%) in PM2.5 during the first week of lockdown (25–31 March 2020) as compared to the pre-lockdown conditions. However, O3 pollution remained high during the lockdown due to non-linear chemistry and dynamics under low aerosol loading. Notably, events of enhanced PM2.5 levels (300–400 µg m−3) were observed during night and early morning hours in the first week of April after air temperatures fell close to the dew-point (~ 15–17 °C). A haze formation mechanism is suggested through uplifting of fine particles, which is reinforced by condensation of moisture following the sunrise. The study highlights a highly complex interplay between the baseline pollution and meteorology leading to counter intuitive enhancements in pollution, besides an overall improvement in air quality during the COVID-19 lockdown in this part of the world. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|