Hamiltonian Structure, Symmetries and Conservation Laws for a Generalized (2 + 1)-Dimensional Double Dispersion Equation
Autor: | Elena Recio, Tamara M. Garrido, Rafael de la Rosa, María S. Bruzón |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Symmetry, Vol 11, Iss 8, p 1031 (2019) |
Druh dokumentu: | article |
ISSN: | 2073-8994 11081031 |
DOI: | 10.3390/sym11081031 |
Popis: | This paper considers a generalized double dispersion equation depending on a nonlinear function f ( u ) and four arbitrary parameters. This equation describes nonlinear dispersive waves in 2 + 1 dimensions and admits a Lagrangian formulation when it is expressed in terms of a potential variable. In this case, the associated Hamiltonian structure is obtained. We classify all of the Lie symmetries (point and contact) and present the corresponding symmetry transformation groups. Finally, we derive the conservation laws from those symmetries that are variational, and we discuss the physical meaning of the corresponding conserved quantities. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |