Hamiltonian Structure, Symmetries and Conservation Laws for a Generalized (2 + 1)-Dimensional Double Dispersion Equation

Autor: Elena Recio, Tamara M. Garrido, Rafael de la Rosa, María S. Bruzón
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Symmetry, Vol 11, Iss 8, p 1031 (2019)
Druh dokumentu: article
ISSN: 2073-8994
11081031
DOI: 10.3390/sym11081031
Popis: This paper considers a generalized double dispersion equation depending on a nonlinear function f ( u ) and four arbitrary parameters. This equation describes nonlinear dispersive waves in 2 + 1 dimensions and admits a Lagrangian formulation when it is expressed in terms of a potential variable. In this case, the associated Hamiltonian structure is obtained. We classify all of the Lie symmetries (point and contact) and present the corresponding symmetry transformation groups. Finally, we derive the conservation laws from those symmetries that are variational, and we discuss the physical meaning of the corresponding conserved quantities.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje