Autor: |
Gowrisankar Arulprakash |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Chaos Theory and Applications, Vol 5, Iss 4, Pp 318-325 (2023) |
Druh dokumentu: |
article |
ISSN: |
2687-4539 |
DOI: |
10.51537/chaos.1334407 |
Popis: |
The present study perturbs the fractional integral of a continuous function $f$ defined on a real compact interval, say $(\mathcal{I}^vf)$ using a family of fractal functions $(\mathcal{I}^vf)^\alpha$ based on the scaling parameter $\alpha$. To elicit this phenomenon, a fractal operator is proposed in the space of continuous functions, an analogue to the existing fractal interpolation operator which perturbs $f$ giving rise to $\alpha$-fractal function $f^\alpha$. In addition, the composition of $\alpha$-fractal function with the linear fractal function is discussed and the composition operation on the fractal interpolation functions is extended to the case of differentiable fractal functions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|