Autor: |
Liam C. Hunt, Jared Stover, Benard Haugen, Timothy I. Shaw, Yuxin Li, Vishwajeeth R. Pagala, David Finkelstein, Elisabeth R. Barton, Yiping Fan, Myriam Labelle, Junmin Peng, Fabio Demontis |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 28, Iss 5, Pp 1268-1281.e6 (2019) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2019.06.094 |
Popis: |
Summary: Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy. : Hunt et al. use the fruit fly Drosophila to identify ubiquitin-related enzymes that regulate skeletal muscle cell (myofiber) size, including the ubiquitin ligase UBR4. Loss of UBR4 promotes myofiber hypertrophy in Drosophila and mice via decreased ubiquitination and degradation of a core set of target proteins. Keywords: ubiquitin ligase, skeletal muscle growth, myofiber hypertrophy, muscle wasting, cancer cachexia, UBR4, Drosophila, myofiber size, HAT1, proteolysis |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|