On tridiagonal matrices associated with Jordan blocks

Autor: da Fonseca Carlos M., Kowalenko Victor
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Acta Universitatis Sapientiae: Mathematica, Vol 14, Iss 1, Pp 61-74 (2022)
Druh dokumentu: article
ISSN: 2066-7752
DOI: 10.2478/ausm-2022-0004
Popis: This paper aims to show how some standard general results can be used to uncover the spectral theory of tridiagonal and related matrices more elegantly and simply than existing approaches. As a typical example, we apply the theory to the special tridiagonal matrices in recent papers on orthogonal polynomials arising from Jordan blocks. Consequently, we find that the polynomials and spectral theory of the special matrices are expressible in terms of the Chebyshev polynomials of second kind, whose properties yield interesting results. For special cases, we obtain results in terms of the Fibonacci numbers and Legendre polynomials.
Databáze: Directory of Open Access Journals