ON INTERPOLATION BY ALMOST TRIGONOMETRIC SPLINES

Autor: Sergey I. Novikov
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Ural Mathematical Journal, Vol 3, Iss 2 (2017)
Druh dokumentu: article
ISSN: 2414-3952
DOI: 10.15826/umj.2017.2.009
Popis: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator \({\cal L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})\) with \(n\in\mathbb{N}\) are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.
Databáze: Directory of Open Access Journals