ON INTERPOLATION BY ALMOST TRIGONOMETRIC SPLINES
Autor: | Sergey I. Novikov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Ural Mathematical Journal, Vol 3, Iss 2 (2017) |
Druh dokumentu: | article |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2017.2.009 |
Popis: | The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator \({\cal L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})\) with \(n\in\mathbb{N}\) are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |