Supersolutions to nonautonomous Choquard equations in general domains

Autor: Aghajani Asadollah, Kinnunen Juha
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 423-443 (2023)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2023-0107
Popis: We consider the nonlocal quasilinear elliptic problem: −Δmu(x)=H(x)((Iα*(Qf(u)))(x))βg(u(x))inΩ,-{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega , where Ω\Omega is a smooth domain in RN{{\mathbb{R}}}^{N}, β≥0\beta \ge 0, Iα{I}_{\alpha }, 00f\left(s),g\left(s)\gt 0 for s>0s\gt 0, and H,Q:Ω→RH,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities ff and gg such as eu,(1+u)p{e}^{u},{\left(1+u)}^{p}, and (1−u)−p{\left(1-u)}^{-p}, p>1p\gt 1. We also discuss the Liouville-type results in unbounded domains.
Databáze: Directory of Open Access Journals