Converting Optical Videos to Infrared Videos Using Attention GAN and Its Impact on Target Detection and Classification Performance

Autor: Mohammad Shahab Uddin, Reshad Hoque, Kazi Aminul Islam, Chiman Kwan, David Gribben, Jiang Li
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Remote Sensing, Vol 13, Iss 16, p 3257 (2021)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs13163257
Popis: To apply powerful deep-learning-based algorithms for object detection and classification in infrared videos, it is necessary to have more training data in order to build high-performance models. However, in many surveillance applications, one can have a lot more optical videos than infrared videos. This lack of IR video datasets can be mitigated if optical-to-infrared video conversion is possible. In this paper, we present a new approach for converting optical videos to infrared videos using deep learning. The basic idea is to focus on target areas using attention generative adversarial network (attention GAN), which will preserve the fidelity of target areas. The approach does not require paired images. The performance of the proposed attention GAN has been demonstrated using objective and subjective evaluations. Most importantly, the impact of attention GAN has been demonstrated in improved target detection and classification performance using real-infrared videos.
Databáze: Directory of Open Access Journals