Autor: |
Aidi Yao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 7, Iss 7, Pp 11732-11758 (2022) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2022654?viewType=HTML |
Popis: |
In this paper, the expansion problem which arises in a two-dimensional (2D) isentropic pseudo-steady supersonic flow expanding into vacuum around a sharp corner for the generalized Chaplygin gas is studied. This expanding problem catches the interaction of an incomplete centered simple wave with a backward planar rarefaction wave and the interaction of a non-planar simple wave with a rigid wall boundary of the 2D self-similar Euler equations. Using the methods of characteristic decompositions and invariant regions, we get the hyperbolicity in the wave interaction domains and prior $ C^{1} $ estimates of solutions to the two interaction problems. It follows the global existence of the solution up to infinity of the gas expansion problem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|