De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee

Autor: Yunxi Liu, R. A. Leo Elworth, Michael D. Jochum, Kjersti M. Aagaard, Todd J. Treangen
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-14 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-34409-z
Popis: Contaminant sequences in metagenomic samples can potentially impact the interpretation of findings reported in microbiome studies, especially in low biomass environments. Here the authors describe Squeegee, a computational approach designed to detect microbial contamination within low microbial biomass microbiomes and identify microbial contaminants in publicly available datasets that lack negative controls.
Databáze: Directory of Open Access Journals